Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Int J Mol Sci ; 25(5)2024 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-38474198

RESUMO

Periodontitis is a bacteria-induced inflammatory disease characterized by the progressive destruction of periodontal supporting tissues. Periodontal ligament stem cells (PDLSCs) are capable of differentiating into osteoblasts, which is an important stem cell source for endogenous periodontal tissue regeneration. Lysine lactylation (Kla) is a novel post-translational modification of proteins that is recently thought to be associated with osteogenic differentiation. Here, we found that lactylation levels are reduced both in the periodontal tissue of rats with periodontitis and lipopolysaccharide (LPS)-stimulated human PDLSCs. Proanthocyanidins were able to promote the osteogenesis of inflamed PDLSCs by restoring lactylation levels. Mechanistically, proanthocyanidins increased lactate production and restored the lactylation levels of PDLSCs, which recovered osteogenesis of inflamed PDLSCs via the Wnt/ß-catenin pathway. These results provide evidence on how epigenetic regulation by pharmacological agents influence the osteogenic phenotype of stem cells and the process of periodontal tissue repair. Our current study highlights the valuable potential of natural product proanthocyanidins in the regenerative engineering of periodontal tissues.


Assuntos
Periodontite , Proantocianidinas , Humanos , Ratos , Animais , Osteogênese/fisiologia , Ligamento Periodontal , Lipopolissacarídeos/metabolismo , Lisina/metabolismo , Proantocianidinas/metabolismo , Epigênese Genética , Células-Tronco/metabolismo , Periodontite/metabolismo , Diferenciação Celular/fisiologia , Células Cultivadas
2.
Nat Commun ; 14(1): 6963, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37907455

RESUMO

Infected bone defects are a major challenge in orthopedic treatment. Native bone tissue possesses an endogenous electroactive interface that induces stem cell differentiation and inhibits bacterial adhesion and activity. However, traditional bone substitutes have difficulty in reconstructing the electrical environment of bone. In this study, we develop a self-promoted electroactive mineralized scaffold (sp-EMS) that generates weak currents via spontaneous electrochemical reactions to activate voltage-gated Ca2+ channels, enhance adenosine triphosphate-induced actin remodeling, and ultimately achieve osteogenic differentiation of mesenchymal stem cells by activating the BMP2/Smad5 pathway. Furthermore, we show that the electroactive interface provided by the sp-EMS inhibits bacterial adhesion and activity via electrochemical products and concomitantly generated reactive oxygen species. We find that the osteogenic and antibacterial dual functions of the sp-EMS depend on its self-promoting electrical stimulation. We demonstrate that in vivo, the sp-EMS achieves complete or nearly complete in situ infected bone healing, from a rat calvarial defect model with single bacterial infection, to a rabbit open alveolar bone defect model and a beagle dog vertical bone defect model with the complex oral bacterial microenvironment. This translational study demonstrates that the electroactive bone graft presents a promising therapeutic platform for complex defect repair.


Assuntos
Osteogênese , Tecidos Suporte , Ratos , Animais , Coelhos , Cães , Biomimética , Regeneração Óssea , Diferenciação Celular , Bactérias
3.
Int J Mol Sci ; 24(17)2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37686118

RESUMO

Oral squamous cell carcinoma (OSCC) is a prevalent form of malignant tumor, characterized by a persistently high incidence and mortality rate. The extracellular matrix (ECM) plays a crucial role in the initiation, progression, and diverse biological behaviors of OSCC, facilitated by mechanisms such as providing structural support, promoting cell migration and invasion, regulating cell morphology, and modulating signal transduction. This study investigated the involvement of ECM-related genes, particularly THBS1, in the prognosis and cellular behavior of OSCC. The analysis of ECM-related gene data from OSCC samples identified 165 differentially expressed genes forming two clusters with distinct prognostic outcomes. Seventeen ECM-related genes showed a significant correlation with survival. Experimental methods were employed to demonstrate the impact of THBS1 on proliferation, migration, invasion, and ECM degradation in OSCC cells. A risk-prediction model utilizing four differentially prognostic genes demonstrated significant predictive value in overall survival. THBS1 exhibited enrichment of the PI3K/AKT pathway, indicating its potential role in modulating OSCC. In conclusion, this study observed and verified that ECM-related genes, particularly THBS1, have the potential to influence the prognosis, biological behavior, and immunotherapy of OSCC. These findings hold significant implications for enhancing survival outcomes and providing guidance for precise treatment of OSCC.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Humanos , Carcinoma de Células Escamosas/genética , Colágeno , Neoplasias Bucais/genética , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Trombospondina 1/metabolismo
4.
J Periodontal Res ; 58(6): 1300-1314, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37715945

RESUMO

OBJECTIVE: This study aimed to investigate the effect of proanthocyanidin (PA) on osteogenesis mediated by periodontal ligament stem cells (PDLSCs) and endogenous alveolar bone regeneration. BACKGROUND: Leveraging the osteogenic potential of resident stem cells is a promising strategy for alveolar bone regeneration. PA has been reported to be effective in osteogenesis. However, the effect and mechanism of PA on the osteogenic differentiation of PDLSCs remain elusive. METHODS: Human PDLSCs were treated with various doses of PA to assess the cell proliferation using Cell Counting Kit-8. The osteogenic differentiation ability was detected by qRT-PCR analysis, western blot analysis, Alizarin red S staining, and Alkaline Phosphatase staining. The level of autophagy was evaluated by confocal laser scanning microscopy, transmission electron microscopy, and western blot analysis. RNA sequencing was utilized to screen the potential signaling pathway. The alveolar bone defect model of rats was created to observe endogenous bone regeneration. RESULTS: PA activated intracellular autophagy in PDLSCs, resulting in enhanced osteogenic differentiation. Moreover, this effect could be abolished by the autophagy inhibitor 3-Methyladenine. Mechanistically, the PI3K/Akt/mTOR pathway was negatively correlated with PA-mediated autophagy activation. Lastly, PA promoted the alveolar bone regeneration in vivo, and this effect was reversed when the autophagy process was blocked. CONCLUSION: PA may activate autophagy by inhibiting PI3K/Akt/mTOR signaling pathway to promote the osteogenesis of PDLSCs and enhance endogenous alveolar bone regeneration.


Assuntos
Ligamento Periodontal , Proantocianidinas , Humanos , Ratos , Animais , Osteogênese , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proantocianidinas/farmacologia , Células-Tronco , Diferenciação Celular , Regeneração Óssea/genética , Proliferação de Células , Serina-Treonina Quinases TOR/metabolismo , Serina-Treonina Quinases TOR/farmacologia , Células Cultivadas
5.
Biomed Pharmacother ; 165: 115042, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37379639

RESUMO

Mesenchymal stem cells (MSCs) are pluripotent stem cells derived from a variety of tissues, such as umbilical cord, fat, and bone marrow. Today, MSCs are widely recognized for their prominent anti-inflammatory properties in a variety of acute and chronic inflammatory diseases. In inflammatory diseases, monocytes/macrophages are an important part of the innate immune response in the body, and the alteration of the inflammatory phenotype plays a crucial role in the secretion of pro-inflammatory/anti-inflammatory factors, the repair of injured sites, and the infiltration of inflammatory cells. In this review, starting from the effect of MSCs on the monocyte/macrophage phenotype, we have outlined in detail the process by which MSCs influence the transformation of the monocyte/macrophage inflammatory phenotype, emphasizing the central role of monocytes/macrophages in MSC-mediated anti-inflammatory and damage site repair. MSCs are phagocytosed by monocytes/macrophages in various physiological states, the paracrine effect of MSCs and mitochondrial transfer of MSCs to macrophages to promote the transformation of monocytes/macrophages into anti-inflammatory phenotypes. We also review the clinical applications of the MSCs-monocytes/macrophages system and describe novel pathways between MSCs and tissue repair, the effects of MSCs on the adaptive immune system, and the effects of energy metabolism levels on monocyte/macrophage phenotypic changes.


Assuntos
Células-Tronco Mesenquimais , Monócitos , Monócitos/metabolismo , Macrófagos/metabolismo , Fenótipo , Anti-Inflamatórios/metabolismo , Células-Tronco Mesenquimais/metabolismo
6.
Oral Dis ; 29(8): 3525-3539, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36437605

RESUMO

OBJECTIVES: Collagen fibrils from carious dentin matrix are prone to enzymatic degradation. This study investigates the feasibility and mechanism of nordihydroguaiaretic acid (NDGA), as a collagen crosslinker, to bio-modify the demineralized dentin matrix. METHODS: The physicochemical properties of the crosslinked dentin matrix were characterized by swelling ratio, ninhydrin assay, Fourier Transform Infrared spectroscopy, and atomic force microscopy. The collagenase degradation resistance was evaluated by measuring loss of dry mass, hydroproline release, loss of elasticity, and micro-nano structure integrity. The cytotoxicity of NDGA-crosslinked dentin collagen was evaluated by flow cytometry. RESULTS: NDGA crosslinked dentin matrix without destroying the integrity of collagen. Mechanistically, NDGA formed bisquinone bond between two adjacent o-quinone groups, resulting in NDGA polymeric matrix in which collagen fibrils were embedded. NDGA modification could significantly enhance the stiffness of dentin matrix at macro-nano scale. The NDGA-crosslinked dentin matrix exhibited remarkably low collagen degradation and sustained bulk elasticity after collagenase challenge, which were attributed to decreased water content, physical masking of collagenase bind sites on collagen, and improved stiffness of collagen fibrils. Notably, NDGA-crosslinked dentin matrix exhibited excellent biocompatibility. CONCLUSION: NDGA, as a biocompatible collagen crosslinker, improves the mechanical properties and biodegradation resistance of demineralized dentin matrix.


Assuntos
Colágeno , Colagenases , Masoprocol/análise , Masoprocol/química , Colagenases/análise , Colagenases/metabolismo , Dentina/química
7.
Polymers (Basel) ; 14(15)2022 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-35956681

RESUMO

The structural integrity of a dentin matrix that has been demineralized by the clinical use of etchants or calcium-depleting endodontic irrigants, such as endodontic ethylenediaminetetraacetic acid (EDTA), is often deteriorated due to the collagenolytic activities of reactivated endogenous enzymes as well as the infiltration of extrinsic bacteria. Therefore, the biomodification of dentin collagen with improved stability and antibacterial activity holds great promise in conservative dentistry. The purpose of this study was to evaluate the effects of the combined application of trimethylated chitosan (TMC) and 1-ethyl-3-[3-dimethylaminopropyl]carbodiimide hydrochloride (EDC) on the biostability and antibacterial activity of the demineralized dentin collagen matrix. The morphological changes in the collagen matrix were observed by scanning electron microscopy (SEM), the amount of TMC adsorbed on the collagen surface was detected by X-ray photoelectron spectroscopy, and the elastic modulus was measured by a three-point bending device. Dry weight loss and amino acid release were detected to evaluate its anti-collagenase degradation performance. The antibacterial performance was detected by confocal microscopy. The TMC-treated group had less collagen space and a more compact collagen arrangement, while the untreated group had a looser collagen arrangement. The combined application of TMC and EDC can increase the elastic modulus, reduce the loss of elastic modulus, and result in good antibacterial performance. The current study proved that a dentin collagen matrix biomodified by TMC and EDC showed improved biodegradation resistance and antibacterial activities.

8.
Front Aging Neurosci ; 14: 899175, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35663584

RESUMO

With the development of medicine, our research on Alzheimer's disease (AD) has been further deepened, but the mechanism of its occurrence and development has not been fully revealed, and there is currently no effective treatment method. Several studies have shown that apolipoprotein AI (ApoA-I) can affect the occurrence and development of Alzheimer's disease by binding to amyloid ß (Aß). However, the association between circulating levels of ApoA-I and AD remains controversial. We conducted a meta-analysis of 18 studies published between 1992 and 2017 to determine whether the ApoA-I levels in the blood and cerebrospinal fluid (CSF) are abnormal in AD. Literatures were searched in PubMed, EMBASE and Web of Science databases without language limitations. A pooled subject sample including 1,077 AD patients and 1,271 healthy controls (HCs) was available to assess circulating ApoA-I levels; 747 AD patients and 680 HCs were included for ApoA-I levels in serum; 246 AD patients and 456 HCs were included for ApoA-I levels in plasma; 201 AD patients and 447 HCs were included for ApoA-I levels in CSF. It was found that serum and plasma levels of ApoA-I were significantly reduced in AD patients compared with HCs {[standardized mean difference (SMD) = -1.16; 95% confidence interval (CI) (-1.72, -0.59); P = 0.000] and [SMD = -1.13; 95% CI (-2.05, -0.21); P = 0.016]}. Patients with AD showed a tendency toward higher CSF ApoA-I levels compared with HCs, although this difference was non-significant [SMD = 0.20; 95% CI (-0.16, 0.56); P = 0.273]. In addition, when we analyzed the ApoA-I levels of serum and plasma together, the circulating ApoA-I levels in AD patients was significantly lower [SMD = -1.15; 95% CI (-1.63, -0.66); P = 0.000]. These results indicate that ApoA-I deficiency may be a risk factor of AD, and ApoA-I has the potential to serve as a biomarker for AD and provide experimental evidence for diagnosis of AD. Systematic Review Registration: PROSPERO, identifier: 325961.

9.
Phytomedicine ; 102: 154198, 2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35636175

RESUMO

BACKGROUND: Postmenopausal osteoporosis (PMOP) is a serious problem for the women over 50 years old. Natural product puerarin (PUE) has been proven to improve PMOP with high safety. PMOP is a metabolic disorder affecting bone metabolism, indicating that endogenous metabolites amelioration may be a novel strategy for PMOP therapy. However, what the metabolic profile of POMP will be after PUE treatment is still obscure. PURPOSE: We purpose to figure out the metabolic characteristics of PMOP and to explore the intrinsic mechanism on the anti-osteoporosis efficacy after PUE treatment based on the serum metabolomics. METHODS: We established OVX rats as osteoporosis model, and the animals were distributed into Sham, OVX, and OVX+PUE (100 mg/kg/d) group. The femurs were analyzed by µ-CT and three-point bending test. Serum metabolomics was performed by UPLC/Q-TOF-MS. We also determined the body weight, liver weight, and the levels of serum TC, TG, LDL-C, and HDL-C. The key proteins of the PPARγ pathway and Wnt pathway were analyzed by Western blot and qPCR experiments. RESULTS: PUE treatment for 14 weeks both improved the bone structure and ameliorated lipid metabolism in ovariectomized rats. By determination and further analysis of serum metabolomics, we revealed that the endogenous metabolites was significantly changed in ovariectomized rats, and PUE treatment adjusted 23 differential metabolites, which were involved in phospholipid metabolism metabolism and PUFAs metabolic pathways. Close correlationships were futher found between the indexes of bone metabolism, lipid metabolism and the differential metabolites, particularly LysoPA, S1P and n-3/n-6 PUFAs. Further, we discovered that PUE regulated differentiation of BMSCs to elicit anti-osteoporosis efficacy, attributing to Wnt/ß-catenin signaling activation and PPARγ pathway inhibition initiated by metabolomics. CONCLUSION: PUE improves OVX-induced osteoporosis and lipid metabolism by regulating phospholipid metabolism and biosynthesis of PUFAs, resulting in reducing the adipogenic differentiation and promoting osteogenic differentiation of BMSCs via Wnt pathway activation and PPARγ pathway inhibition in ovariectomized rats. The study provides us a novel mechanism to explain the improvement of osteoporosis by PUE, depicts a metabolic profile of PMOP, and gives us another point cut for further exploring the pathogenesis of PMOP and looking for biomarkers of osteoporosis.


Assuntos
Ácidos Graxos Insaturados , Isoflavonas , Osteoporose Pós-Menopausa , Fosfolipídeos , Animais , Ácidos Graxos Insaturados/biossíntese , Ácidos Graxos Insaturados/sangue , Feminino , Humanos , Isoflavonas/farmacologia , Metabolismo dos Lipídeos , Metabolômica , Osteogênese , Osteoporose Pós-Menopausa/sangue , Osteoporose Pós-Menopausa/tratamento farmacológico , Osteoporose Pós-Menopausa/metabolismo , Ovariectomia , PPAR gama/metabolismo , Fosfolipídeos/sangue , Fosfolipídeos/metabolismo , Ratos
10.
Mol Cancer ; 21(1): 115, 2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35581586

RESUMO

Cancer is a type of malignant affliction threatening human health worldwide; however, the molecular mechanism of cancer pathogenesis remains to be elusive. The oncogenic hedgehog (Hh) pathway is a highly evolutionarily conserved signaling pathway in which the hedgehog-Patched complex is internalized to cellular lysosomes for degradation, resulting in the release of Smoothened inhibition and producing downstream intracellular signals. Noncoding RNAs (ncRNAs) with diversified regulatory functions have the potency of controlling cellular processes. Compelling evidence reveals that Hh pathway, ncRNAs, or their crosstalk play complicated roles in the initiation, metastasis, apoptosis and drug resistance of cancer, allowing ncRNAs related to the Hh pathway to serve as clinical biomarkers for targeted cancer therapy. In this review, we attempt to depict the multiple patterns of ncRNAs in the progression of malignant tumors via interactions with the Hh crucial elements in order to better understand the complex regulatory mechanism, and focus on Hh associated ncRNA therapeutics aimed at boosting their application in the clinical setting.


Assuntos
Proteínas Hedgehog , Neoplasias , Apoptose , Proteínas Hedgehog/genética , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/genética , RNA não Traduzido/genética , Transdução de Sinais/fisiologia
11.
Stem Cell Res Ther ; 13(1): 81, 2022 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-35209940

RESUMO

BACKGROUND: Abdominal aortic aneurysm (AAA) is life-threatening, surgical treatment is currently the only clinically available intervention for the disease. Mesenchymal stem cells (MSCs) have presented eligible immunomodulatory and regenerative abilities which showed favorable therapeutic efficacy in various cardiovascular diseases. However, current evidence summarizing the effectiveness of MSCs for AAA is lacking. Thus, a meta-analysis and systematic review was necessary to be performed to assess the therapeutic efficacy of MSCs for AAA in preclinical studies. METHODS: Comprehensive literature search restricted in English was conducted in PubMed, Cochrane Library, EBSCO, EMBASE and Web of Science from inception to Oct 2021. The primary outcomes were parameters about aortic diameter change during MSCs intervention. The secondary outcomes included elastin content and expression level of inflammatory cytokines, matrix metalloproteinases (MMPs) and their inhibitors (TIMPs). Data were extracted and analyzed independently by two authors. The meta package with random effects model was used to calculate the pooled effect size and 95% confidence intervals in R (version 4.0.2). RESULTS: Meta-analysis of 18 included studies demonstrated that MSCs intervention has significant therapeutic effects on suppressing aortic diameter enlargement compared with the control group (diameter, SMD = - 1.19, 95% CI [- 1.47, - 0.91]; diameter change ratio, SMD = - 1.36, 95% CI [- 1.72, - 1.00]). Subgroup analysis revealed differences between MSCs and control group regarding to cell type, intervention route and cell compatibility. Moreover, the meta-analysis also showed that MSCs intervention had a significant effect on preserving aortic elastin content, reducing MCP-1, TNF-α, IL-6, MMP-2/9 and increasing TIMP-1/2 expression level compared with control group. CONCLUSION: Our results suggested that MSC intervention is effective in AAA by suppressing aortic diameter enlargement, reducing elastin degradation, and modulating local immunoinflammatory reactions. These results are important for the systemic application of MSCs as a potential treatment candidate for AAA in further animal experiments and clinical trials.


Assuntos
Aneurisma da Aorta Abdominal , Células-Tronco Mesenquimais , Animais , Aorta/metabolismo , Aneurisma da Aorta Abdominal/metabolismo , Aneurisma da Aorta Abdominal/terapia , Metaloproteinases da Matriz/metabolismo , Células-Tronco Mesenquimais/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
12.
Bioengineered ; 12(1): 8980-8993, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34637689

RESUMO

Abdominal aortic aneurysm (AAA) is life-threatening, its natural course is progressively sac expansion and rupture. Elegant studies have been conducted to investigate the molecular markers associated with AAA growth and expansion, this topic however, still needs to be further elucidated. This study aimed to identify potential genes for AAA growth and expansion based on comprehensive bioinformatics approaches. Firstly, 29 up-regulated genes were identified through DEGs analysis between large AAA and small AAA in GSE57691. Secondly, signed WGCNA analysis was conducted based on GSE57691 and the green module was found to exhibit the topmost correlation with large AAA as well as AAA, 133 WGCNA hub genes were further identified. Merged gene set including 29 up-regulated DEGs and 858 green module genes was subjected to constructing a PPI network where 195 PPI hub genes were identified. Subsequently, 4 crucial genes including POU2AF1, FCRLA, CD79B, HLA-DOB were recognized by Venn plot. In addition, by using GSE7084 and GSE98278 for verification, POU2AF1 showed potential diagnostic value between AAA and normal groups, and exhibited a significant higher expression level in large AAA samples compared with small AAA samples. Furthermore, immunohistochemistry results indicated up-regulation of POU2AF1 in large AAA samples than small AAA samples, which implies POU2AF1 may be a key regulator in AAA enlargement and growth. In summary, this study indicates that POU2AF1 has great predictive value for the expansion of AAA, and may contribute to the further exploration of pathogenesis and progression of AAA.


Assuntos
Aneurisma da Aorta Abdominal/patologia , Biomarcadores/metabolismo , Biologia Computacional/métodos , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Mapas de Interação de Proteínas , Transativadores/metabolismo , Aneurisma da Aorta Abdominal/genética , Aneurisma da Aorta Abdominal/metabolismo , Perfilação da Expressão Gênica , Humanos , Transativadores/genética
13.
Drug Deliv ; 28(1): 884-893, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33960253

RESUMO

Full thickness cutaneous wound therapy and regeneration remains a critical challenge in clinical therapeutics. Recent reports have suggested that mesenchymal stem cells exosomes therapy is a promising technology with great potential to efficiently promote tissue regeneration. Multifunctional hydrogel composed of both synthetic materials and natural materials is an effective carrier for exosomes loading. Herein, we constructed a biodegradable, dual-sensitive hydrogel encapsulated human umbilical cord-mesenchymal stem cells (hUCMSCs) derived exosomes to facilitate wound healing and skin regeneration process. The materials characterization, exosomes identification, and in vivo full-thickness cutaneous wound healing effect of the hydrogels were performed and evaluated. The in vivo results demonstrated the exosomes loaded hydrogel had significantly improved wound closure, re-epithelialization rates, collagen deposition in the wound sites. More skin appendages were observed in exosomes loaded hydrogel treated wound, indicating the potential to achieve complete skin regeneration. This study provides a new access for complete cutaneous wound regeneration via a genipin crosslinked dual-sensitive hydrogel loading hUCMSCs derived exosomes.


Assuntos
Exossomos/metabolismo , Hidrogéis/química , Iridoides/farmacologia , Pele/efeitos dos fármacos , Cicatrização/efeitos dos fármacos , Animais , Movimento Celular/efeitos dos fármacos , Colágeno/metabolismo , Liberação Controlada de Fármacos , Feminino , Concentração de Íons de Hidrogênio , Iridoides/administração & dosagem , Células-Tronco Mesenquimais/efeitos dos fármacos , Tamanho da Partícula , Ratos , Ratos Sprague-Dawley
14.
Materials (Basel) ; 14(5)2021 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-33802293

RESUMO

Bacterial reinfection and root fracture are the main culprits related to root canal treatment failure. This study aimed to assess the utility of quercetin solution as an adjunctive endodontic irrigant that does not weaken root canal dentin with commitment anti-biofilm activity and bio-safety. Based on a noninvasive dentin infection model, dentin tubules infected with Enterococcus faecalis (E. faecalis) were irrigated with sterile water (control group), and 0, 1, 2, 4 wt% quercetin-containing ethanol solutions. Live and dead bacteria percentages in E. faecalis biofilms were analyzed by confocal laser scanning microscopy (CLSM). Elastic modulus, hydroxyproline release and X-ray photoelectron spectroscopy (XPS) characterization were tested to evaluate the irrigants' collagen-stabilizing effect. The cytotoxicity was tested by CCK-8 assay. Quercetin increased the proportion of dead bacteria volumes within E. faecalis and improved the flexural strength of dentin compared to control group (p < 0.05). Quercetin-treated dentin matrix had less elasticity loss and hydroxyproline release after collagenase degradation (p < 0.05). Moreover, quercetin solutions revealed an increase in the C-O peak area under both C1s and O1s narrow-scan spectra of XPS characterization, and no cytotoxicity (p > 0.05). Quercetin exhibited anti-biofilm activity, a collagen-stabilizing effect with cytocompatibility, supporting quercetin as a potential candidate for endodontic irrigant.

15.
Artif Cells Nanomed Biotechnol ; 49(1): 345-353, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33784224

RESUMO

PEG-interpenetrated dual-sensitive hydrogels that load nano lipid carrier (NLC) were researched and developed for topical drug administration. Natural antioxidant α-lipoic acid (ALA) was selected as our model drug. The α-lipoic acid (ALA) nano lipid carrier was successfully prepared by hot melt emulsification and ultrasonic dispersion method, and the physicochemical properties of the nano lipid carrier were investigated, including morphology, particle distribution, polydispersity coefficient, zeta potential and encapsulation efficiency. Carboxymethyl chitosan and poloxamer 407 contributed to pH- and temperature-sensitive properties in the hydrogel, respectively. Natural non-toxic cross-linking agent genipin reacted with carboxymethyl chitosan to form the hydrogel. Poly ethylene glycol (PEG), a polymer compound with good water solubility and biocompatibility, interpenetrated the hydrogel and influenced the mechanical strength and drug release behaviour. FI-IR test verified the successful synthesis of the hydrogel. The rheological parameters indicated that the mechanical strength of the hydrogel was positively correlated with the amount of PEG, and the in vitro dissolution profiles demonstrated that the increasement of PEG could accelerate the drug release rate. The compatibility of the drug delivery system was verified with cells and mice model. Topical delivery of ALA in solution, NLC and NLC-gel was investigated in-vitro.


Assuntos
Portadores de Fármacos/química , Hidrogéis/química , Iridoides/química , Lipídeos/química , Nanoestruturas/química , Polietilenoglicóis/química , Administração Tópica , Composição de Medicamentos
16.
Exp Mol Med ; 52(12): 1959-1975, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33262480

RESUMO

Gut microbiota dysbiosis has a significant role in the pathogenesis of metabolic diseases, including obesity. Nuciferine (NUC) is a main bioactive component in the lotus leaf that has been used as food in China since ancient times. Here, we examined whether the anti-obesity effects of NUC are related to modulations in the gut microbiota. Using an obese rat model fed a HFD for 8 weeks, we show that NUC supplementation of HFD rats prevents weight gain, reduces fat accumulation, and ameliorates lipid metabolic disorders. Furthermore, 16S rRNA gene sequencing of the fecal microbiota suggested that NUC changed the diversity and composition of the gut microbiota in HFD-fed rats. In particular, NUC decreased the ratio of the phyla Firmicutes/Bacteroidetes, the relative abundance of the LPS-producing genus Desulfovibrio and bacteria involved in lipid metabolism, whereas it increased the relative abundance of SCFA-producing bacteria in HFD-fed rats. Predicted functional analysis of microbial communities showed that NUC modified genes involved in LPS biosynthesis and lipid metabolism. In addition, serum metabolomics analysis revealed that NUC effectively improved HFD-induced disorders of endogenous metabolism, especially lipid metabolism. Notably, NUC promoted SCFA production and enhanced intestinal integrity, leading to lower blood endotoxemia to reduce inflammation in HFD-fed rats. Together, the anti-obesity effects of NUC may be related to modulations in the composition and potential function of gut microbiota, improvement in intestinal barrier integrity and prevention of chronic low-grade inflammation. This research may provide support for the application of NUC in the prevention and treatment of obesity.


Assuntos
Aporfinas/farmacologia , Dieta Hiperlipídica/efeitos adversos , Microbioma Gastrointestinal/efeitos dos fármacos , Obesidade/etiologia , Obesidade/metabolismo , Substâncias Protetoras/farmacologia , Animais , Aporfinas/química , Relação Dose-Resposta a Droga , Disbiose/tratamento farmacológico , Ácidos Graxos/metabolismo , Metabolismo dos Lipídeos , Metaboloma , Metabolômica/métodos , Metagenoma , Metagenômica/métodos , Obesidade/prevenção & controle , Substâncias Protetoras/química , Ratos
17.
Biomed Pharmacother ; 132: 110923, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33125971

RESUMO

SCOPE: Half of women over the age of 50 will experience a fracture related osteoporosis in their lifetime. The common treatment is estrogen replacement therapy, which can cause many side effects. Puerarin as a phytoestrogen has been proven to improve postmenopausal osteoporosis. However, the mechanisms of anti-osteoporosis remain unclear due to its low bioavailability. The aim of this study is to investigate whether the anti-osteoporosis effects of puerarin are related to modulations in the gut microbiota and focus on the mechanism of gut / bone axis. METHODS: We established ovariectomized (OVX) rats as osteoporosis model. The femur was analyzed by microcomputed tomography (µ-CT) and we measured serum biochemical indices and inflammatory factors. 16S rRNA sequencing was employed to evaluate the gut microbiota composition in the fecal samples. Short-chain fatty acids (SCFAs) was analyzed by GC. The expression of intestinal inflammatory factors and adhesion proteins was confirmed by western blotting and qPCR. RESULTS: Puerarin increased the BMD and improved the intestinal mucosal integrity to reduce the systemic inflammation. The disorder of gut microbiota was improved and its metabolites SCFAs were elevated. Metabolic pathways such as amino acid metabolism, LPS biosynthesis and butyrate metabolism were enriched. CONCLUSION: Puerarin treatment modulated the gut microbiota disorder to elicit the anti-osteoporosis effects in OVX rats, by improving the bone micro-environment via regulating the SCFAs levels and repairing the intestinal mucosal integrity.


Assuntos
Bactérias/efeitos dos fármacos , Remodelação Óssea/efeitos dos fármacos , Colo/efeitos dos fármacos , Ácidos Graxos Voláteis/metabolismo , Fêmur/efeitos dos fármacos , Microbioma Gastrointestinal/efeitos dos fármacos , Mucosa Intestinal/efeitos dos fármacos , Isoflavonas/farmacologia , Osteoporose Pós-Menopausa/prevenção & controle , Animais , Bactérias/metabolismo , Densidade Óssea/efeitos dos fármacos , Colo/microbiologia , Colo/patologia , Modelos Animais de Doenças , Disbiose , Feminino , Fêmur/metabolismo , Fêmur/patologia , Humanos , Mediadores da Inflamação/metabolismo , Mucosa Intestinal/microbiologia , Mucosa Intestinal/patologia , Osteoporose Pós-Menopausa/metabolismo , Osteoporose Pós-Menopausa/microbiologia , Osteoporose Pós-Menopausa/patologia , Ovariectomia , Ratos Sprague-Dawley
18.
Stem Cells Dev ; 29(15): 981-993, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32486904

RESUMO

Abdominal aortic aneurysm (AAA) is life-threatening, for which efficient nonsurgical treatment strategy has not been available so far. Several previous studies investigating the therapeutic effect of mesenchymal stem cells (MSCs) in AAA indicated that MSCs could inhibit aneurysmal inflammatory responses and extracellular matrix destruction, and suppress aneurysm occurrence and expansion. Vascular smooth muscle cell (VSMC) phenotypic plasticity is reported to be predisposed in AAA initiation and progression. However, little is known about the effect of MSCs on VSMC phenotypic modulation in AAA. In this study, we investigate the therapeutic efficacy of umbilical cord mesenchymal stem cells (UC-MSCs) in elastase-induced AAA model and evaluate the effect of UC-MSC on VSMC phenotypic regulation. We demonstrate that the intravenous injection of UC-MSC attenuates elastase-induced aneurysmal expansion, reduces elastin degradation and fragmentation, inhibits MMPs and TNF-α expression, and preserves and/or restores VSMC contractile phenotype in AAA. Taken together, these results highlight the therapeutic and VSMC phenotypic modulation effects of UC-MSC in AAA progression, which further indicates the potential of applying UC-MSC as an alternative treatment candidate for AAA.


Assuntos
Aneurisma da Aorta Abdominal/terapia , Progressão da Doença , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/patologia , Cordão Umbilical/citologia , Animais , Separação Celular , Modelos Animais de Doenças , Humanos , Metaloproteinases da Matriz/metabolismo , Elastase Pancreática , Perfusão , Fenótipo , Proteólise , Ratos Sprague-Dawley , Fator de Necrose Tumoral alfa/biossíntese
19.
Brain Res ; 1727: 146554, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31765631

RESUMO

Serum lipid levels such as triglyceride and cholesterol has been reported to play an important role in the pathophysiological process of Alzheimer disease (AD) and mild cognitive impairment (MCI). However, it still remains controversial in different studies. Here, we performed a meta-analysis to assess the importance of serum levels of total cholesterol (TC), triglycerides (TG), low-density lipoprotein cholesterol (LDL-C) and high-density lipoprotein cholesterol (HDL-C) in AD and MCI patients. PubMed, China National Knowledge Infrastructure (CNKI) system database were used to identify 17 studies (10 AD-only + 4 MCI-only + 3 shared AD/MCI), including 2333 cases and 3615 healthy controls (HC). We found that compared with HC, both the serum TC levels [SMD = 0.58; 95%CI (0.25, 0.90); P = 0.001) and the serum LDL-C levels [SMD = 0.7780; 95%CI (0.3940, 1.1521); P = 0.000] were higher in cognitive impairment population (including AD and MCI) than those in HC, respectively. Furthermore, we analyzed the serum TC and LDL-C levels in AD and MCI patients. We found that the serum TC levels [SMD = 0.76; 95% CI (0.13, 1.40); P = 0.019]1 and the LDL-C levels [SMD = 1.40; 95% CI (0.70, 2.10; P = 0.000] were increased in AD patients. In the MCI patients, the serum TC levels [SMD = 0.30; 95%CI (0.01, 0.59); P = 0.041] had a significantly upward trend, while the LDL-C levels had no significant change, compared with HC subjects. However, there is no significant changes in HDL-C and TG levels in AD or MCI patients. Therefore, our results suggested that the elevated TC and LDL-C levels may be a potential risk factor for cognitive impairment.


Assuntos
Doença de Alzheimer/sangue , LDL-Colesterol/sangue , Colesterol/sangue , Disfunção Cognitiva/sangue , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fatores de Risco , Triglicerídeos/sangue
20.
Biomed Res Int ; 2019: 8179145, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30918899

RESUMO

BACKGROUND: Early diagnosis of Alzheimer's disease (AD) is an urgent point for AD prevention and treatment. The biomarkers of AD still remain indefinite. Based on the bioinformatics analysis of mRNA differential expressions in the brain tissues and the peripheral blood samples of Alzheimer's disease (AD) patients, we investigated the target mRNAs that could be used as an AD biomarker and developed a new effective, practical clinical examination program. METHODS: We compared the AD peripheral blood mononuclear cells (PBMCs) expression dataset (GEO accession GSE4226 and GSE18309) with AD brain tissue expression datasets (GEO accessions GSE1297 and GSE5281) from GEO in the present study. The GEO gene database was used to download the appropriate gene expression profiles to analyze the differential mRNA expressions between brain tissue and blood of AD patients and normal elderly. The Venn diagram was used to screen out the differential expression of mRNAs between the brain tissue and blood. The protein-protein interaction network map (PPI) was used to view the correlation between the possible genes. GO (gene ontology) and KEGG (Kyoto Gene and Genomic Encyclopedia) were used for gene enrichment analysis to determine the major affected genes and the function or pathway. RESULTS: Bioinformatics analysis revealed that there were differentially expressed genes in peripheral blood and hippocampus of AD patients. There were 4958 differential mRNAs in GSE18309, 577 differential mRNAs in GSE4226 in AD PBMCs sample, 7464 differential mRNAs in GSE5281, and 317 differential mRNAs in GSE129 in AD brain tissues, when comparing between AD patients and healthy elderly. Two mRNAs of RAB7A and ITGB1 coexpressed in hippocampus and peripheral blood were screened. Furthermore, functions of differential genes were enriched by the PPI network map, GO, and KEGG analysis, and finally the chemotaxis, adhesion, and inflammatory reactions were found out, respectively. CONCLUSIONS: ITGB1 and RAB7A mRNA expressions were both changed in hippocampus and PBMCs, highly suggested being used as an AD biomarker with AD. Also, according to the results of this analysis, it is indicated that we can test the blood routine of the elderly for 2-3 years at a frequency of 6 months or one year. When a patient continuously detects the inflammatory manifestations, it is indicated as a potentially high-risk AD patient for AD prevention.


Assuntos
Doença de Alzheimer/genética , Hipocampo/metabolismo , Cadeias beta de Integrinas/genética , Proteínas rab de Ligação ao GTP/genética , Idoso , Doença de Alzheimer/sangue , Doença de Alzheimer/patologia , Biologia Computacional , Feminino , Regulação da Expressão Gênica/genética , Redes Reguladoras de Genes/genética , Hipocampo/patologia , Humanos , Leucócitos Mononucleares , Masculino , Análise em Microsséries , Mapas de Interação de Proteínas/genética , RNA Mensageiro/genética , proteínas de unión al GTP Rab7
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...